Texture Measures for Segmentation

نویسنده

  • Stephen Haddad
چکیده

Texture is an important visual cue in both human and computer vision. Segmenting images into regions of constant texture is used in many applications. This work surveys a wide range of texture descriptors and segmentation methods to determine the state of the art in texture segmentation. Two types of texture descriptors are investigated: filter bank based methods and local descriptors. Filter banks deconstruct an image into several bands, each of which emphasises areas of the image with different properties. Textons are an adaptive histogram method which describes the distribution of typical feature vectors. Local descriptors calculate features from smaller neighbourhoods than filter banks. Some local descriptors calculate a scale for their local neighbourhood to achieve scale invariance. Both local and global segmentation methods are investigated. Local segmentation methods consider each pixel in isolation. Global segmentation methods penalise jagged borders or fragmented regions in the segmentation. Pixel labelling and border detection methods are investigated. Methods for measuring the accuracy of segmentation are discussed. Two data sets are used to test the texture segmentation algorithms. The Brodatz Album mosaics are composed of grayscale texture images from the Brodatz Album. The Berkeley Natural Images data set has 300 colour images of natural scenes. The tests show that, of the descriptors tested, filter bank based textons are the best texture descriptors for grayscale images. Local image patch textons are best for colour images. Graph cut segmentation is best for pixel labelling problems and edge detection with regular borders. Non-maxima suppression is best for edge detection with irregular borders. Factors affecting the performance of the algorithms are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Correlation of Object-based Texture Measures at Multiple Scales in Sub-decimeter Resolution Aerial Photography

Texture measures are commonly used to increase the number of input bands in order to improve classification accuracy, especially for panchromatic or true colour imagery. While the use of texture measures in pixel-based analysis has been well documented, this is not the case for texture measures calculated in an object-based environment. Because texture calculations are computer intensive, fewer...

متن کامل

Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet

  Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...

متن کامل

Empirical Evaluation of Dissimilarity Measures for Color and Texture

This paper empirically compares nine image dissimilarity measures that are based on distributions of color and texture features summarizing over 1,000 CPU hours of computational experiments. Ground truth is collected via a novel random sampling scheme for color, and via an image partitioning method for texture. Quantitative performance evaluations are given for classification, image retrieval, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007